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Fourier transform and Fourier multipliers: Rn

The Fourier transform f̂ of f : Rn → C is

f̂(ξ) =

∫
Rn
f(x)e−2πi〈x,ξ〉dx.

Given φ : Rn → C, the Fourier multiplier mφ with symbol φ is

m̂φf(ξ) = φ(ξ)f̂(ξ), ξ ∈ Rn,

or
(mφf̂)(ξ) = φ̂f(ξ), ξ ∈ Rn.

Questions: under which conditions of φ
I mφ is bounded over Lp(Rn)? (Lp-Fourier multiplier)
I mφ is bounded from Lp(Rn) to Lq(Rn)? (Lp-Lq Fourier multiplier)
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Hörmander’s Lp-Lq Fourier multiplier theorem

Hörmander 1960 Acta. Math.
Let 1 < p ≤ 2 ≤ q <∞. Then for Fourier multiplier mφ with symbol φ:

‖mφ : Lp (Rn)→ Lq (Rn) ‖ -p,q sup
s>0

s

(∫
ξ∈Rn:|φ(ξ)|≥s

dξ

) 1
p−

1
q

.

The RHS is related to the weak Lr-spaces with 1/r = 1/p− 1/q.
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Weak Lp spaces and Lorentz spaces (1/2)

Fix a measure space (X,µ). The distribution function of a
measurable function f : X → R is

df (s) := µ({x : |f(x)| > s}).

The weak Lp-spaces, 0 < p <∞:

‖f‖p,∞ := sup
s>0

sdf (s)
1
p .

The more general Lorentz spaces, for 0 < p <∞, 0 < q ≤ ∞,

‖f‖p,q := p
1
q

(∫ ∞
0

[
sdf (s)

1
p

]q ds
s

) 1
q

, q <∞.
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Weak Lp spaces and Lorentz spaces (2/2)

Basic properties of Lorentz spaces

I Lp,p = Lp ⊂ Lp,∞.
I Lp,q ⊂ Lp,r ⊂ Lp,∞ whenever q < r <∞.
I for 1/p0 = 1/p1 + 1/p2, 1/q0 = 1/q1 + 1/q2:

‖fg‖p0,q0 - ‖f‖p1,q1‖g‖p2,q2 .
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Some follow-ups of Hörmander’s theorem

I compact Lie groups [Akylzhanov, Nursultanov and Ruzhansky,
2016]

I locally compact separable unimodular groups [Akylzhanov and
Ruzhansky, 2016]

I compact quantum groups of Kac type [Akylzhanov, Majid and
Ruzhansky, 2018]

I ...
This talk: certain locally compact quantum groups, slightly simpler.
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Main result

Let G = (M,∆, ϕ, ψ) be a locally compact quantum group with dual
Ĝ = (M̂, ∆̂, ϕ̂, ψ̂).

Theorem Z. 2021
Let 1 < p ≤ 2 ≤ q <∞ and 1/r = 1/p− 1/q. Suppose that ϕ and ϕ̂
are both tracial. Then the Fourier multiplier mx with symbol x satisfies

‖mx : Lp(Ĝ, ϕ̂)→ Lq(Ĝ, ϕ̂)‖ -p,q ‖x‖Lr,∞(G,ϕ).

Corollary

When Ĝ is a compact quantum group of Kac type, such as group von
Neumann algebra Ĝ of a discrete group G, then

‖mx : Lp(Ĝ, ϕ̂)→ Lp(Ĝ, ϕ̂)‖ -p ‖x‖Lp∗,∞(G,ϕ),

where 1 < p <∞ and 1/p∗ = |1/2− 1/p|.
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Plan

Simpler proof of Rn case

Noncommutative Lp-spaces, Lorentz spaces and interpolation

Locally compact quantum groups and Fourier transform

Proof of main results and remarks
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Hausdorff–Young inequalities for Rn

We know that the Fourier transform on Rn satisfies

‖f̂‖∞ ≤ ‖f‖1,

and Parseval–Plancherel identity

‖f̂‖2 = ‖f‖2.

Then by complex interpolation, we get the famous

Hausdorff–Young inequalities

Let 1 < p < 2 and 1/p′ + 1/p = 1. Then

‖f̂‖p′ ≤ ‖f‖p.
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Interpolation of Lp-spaces

For any 1 ≤ p0, p1, q0, q1 ≤ ∞ and 0 ≤ θ ≤ 1. Put

1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
.

If T is linear such that

‖T : Lpi → Lqi‖ := Mi <∞, i = 0, 1,

then
I Complex interpolation

‖T : Lpθ → Lqθ‖ ≤M
1−θ
0 Mθ

1 .

I Real interpolation: ∀r

‖T : Lpθ,r → Lqθ,r‖ -M1−θ
0 Mθ

1 .
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Hausdorff–Young inequalities via interpolation

Consider the Fourier transform and couples (L1, L2) and (L∞, L2):

‖f̂‖∞ ≤ ‖f‖1, ‖f̂‖2 = ‖f‖2.

So for 1 < p < 2 and 1/p′ + 1/p = 1, the complex interpolation gives

‖f̂‖p′ ≤ ‖f‖p,

while the real interpolation gives real Hausdorff–Young inequalities

‖f̂‖p′ ≤ cp‖f‖p,p′ , ‖f̂‖p′,p ≤ cp‖f‖p.

The real version is stronger in the sense that: whenever p < q <∞

Lp = Lp,p ⊂ Lp,q ⊂ Lp,∞.
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A simpler proof for Hörmander’s theorem

We need to show that

‖mφ : Lp(Rn)→ Lq(Rn)‖ - ‖φ‖r,∞,

where 1 < p ≤ 2 ≤ q <∞ and

1

r
=

1

p
− 1

q
=

1

q′
− 1

p′
.

The proof is as follows:

‖φ̂f‖q -‖φf‖q′,q real Hausdorff–Young
-‖φ‖r,∞‖f‖p′,q Hölder for Lorentz spaces
-‖φ‖r,∞‖f‖p′,p inclusoin of Lorentz spaces

-‖φ‖r,∞‖f̂‖p. real Hausdorff–Young for dual
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Simpler proof of Rn case

Noncommutative Lp-spaces, Lorentz spaces and interpolation

Locally compact quantum groups and Fourier transform

Proof of main results and remarks
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Noncommutative Lp-spaces

LetM be a von Neumann algebra (i.e. a *-subalgebra of B(H) that is
weak-closed) equipped with a normal semifinite faithful trace τ .

Examples

I (M, τ) = (L∞(X),
∫
·dµ) for a measure space (X,µ),

I (M, τ) = (Mn(C),Tr).

For 0 < p <∞, put

‖x‖pp := τ |x|p = τ(x∗x)p/2, x ∈M.

Then Lp(M) is the completion of (M, ‖ · ‖p). Set

L∞(M) :=M, ‖x‖∞ := ‖x‖.
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Noncommutative Lorentz spaces

The NC distribution function:

λs(x) := τ(1(s,∞)(|x|)), s ≥ 0.

Then one can define NC Lorentz spaces in a similar way, and
I basic properties of NC Lorentz spaces: 3

I complex interpolation and real interpolation results: 3

Remarks
If τ is a weight, i.e. τ(ab) 6= τ(ba), then
I NC Lp(M, τ) and complex interpolation: 3

I NC Lp,q(M, τ) and real interpolation: 7, i.e. in general

(L∞, L1)1/p 6= (L∞, L1)1/p,p.
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Simpler proof of Rn case

Noncommutative Lp-spaces, Lorentz spaces and interpolation

Locally compact quantum groups and Fourier transform

Proof of main results and remarks
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Locally compact groups

About a locally compact group (G,µ, ν):
I a topological group: group + topology, compatible
I examples: (locally compact, compact, discrete) group: R,T,Z
I any locally compact group has a left Haar measure µ:

µ(sE) = µ(E),∀s ∈ G,E ⊂ G; (left invariant)

and a right Haar measure ν:

µ(Es) = µ(E),∀s ∈ G,E ⊂ G. (right invariant)

I G is unimodular if µ = ν (up to a factor). Examples: (R, dx).
What is a locally compact quantum group?
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Motivation: non-abelian Pontryagin duality

Pontryagin duality

Let G be a locally compact abelian group. Its dual

Ĝ := {irreducible unitary strongly continuous representation of G}

is also a locally compact abelian group. We have ̂̂G ∼= G.

Examples

G : Zn Z T Rn

Ĝ : Zn T Z Rn

What if G is non-abelian? Ĝ is NOT a group in general, but it is a
locally compact quantum group and Pontryagin duality still holds.
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Pontryagin duality: abelian

locally compact abelian groups

G ∼= ̂̂
G Ĝ

compact - discrete -

Figure: Pontryagin duality in the category of locally compact abelian groups
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Pontryagin duality: abelian

locally compact abelian groups

G ∼= ̂̂
G Ĝcompact - discrete -

Figure: Pontryagin duality in the category of locally compact abelian groups
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Pontryagin duality: non-abelian and quantum

locally compact quantum groups

G =
̂̂G Ĝ

compact - discrete -

Figure: Pontryagin duality in the category of locally compact quantum groups
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Pontryagin duality: non-abelian and quantum

locally compact quantum groups

G =
̂̂G Ĝcompact - discrete -

Figure: Pontryagin duality in the category of locally compact quantum groups
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Locally compact quantum groups

Kustermans and Vaes, 2000, 2003
A locally compact quantum group G = (M,∆, ϕ, ψ) consists of

1. a von Neumann algebraM; (L∞(G))
2. a normal, unital, *-homomorphism ∆ :M→M⊗M such that

(∆⊗ id)∆ = (id⊗∆)∆; (G×G→ G)

3. a normal, semifinite, faithful weight ϕ which is left invariant

ϕ[(ω ⊗ id)∆(x)] = ϕ(x)ω(1), ω ∈M+
∗ ; (left Haar measure µ)

4. a normal, semifinite, faithful weight ψ which is right invariant

ψ[(id⊗ ω)∆(x)] = ψ(x)ω(1), ω ∈M+
∗ .(right Haar measure ν)
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Fourier transform: abelian groups

When (G,µ) is locally compact abelian, the Fourier transform F is

F(f)(ξ) = f̂(ξ) =

∫
G

f(s)ξ(s)dµ(s), ξ ∈ Ĝ.

What if G is non-abelian? Observation: when G is abelian

F(f ∗ g) = F(f)F(g), f ∈ L1(G,µ), g ∈ L2(G,µ).

So F(f)· is unitarily equivalent to the convolution operator

Fλ(f) = F(f) · F .
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Fourier transform: non-abelian groups

The left regular representation λ of G:

λsg(t) = g(s−1t), g ∈ L2(G,µ).

Kunze 1958
G unimodular and non-abelian. The Fourier transform:

f̂ = λ(f) :=

∫
G

f(s)λsdµ(s) ∈ B(L2(G)), f ∈ L1(G).

We still have Hausdorff–Young inequalities:

‖λ(f)‖Lp′ (Ĝ) ≤ ‖f‖Lp(G), 1 ≤ p ≤ 2.

further generalized to non-unimodular case (Terp 2017).
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Fourier transform: quantum group case

Let G = (M,∆, ϕ, ψ) be a locally compact quantum group.

Theorem-Definition of (left) multiplicative unitary

There exists a unitary operator W ∈ B(L2(G, ϕ)⊗L2(G, ϕ)) such that

W ∗(x⊗ y) = ∆(y)(x⊗ 1).

This operator contains all the data of G. When G = G, then

Wf(s, t) = f(s, s−1t).

Then the Fourier transform of ω ∈ L1(G) =M∗:

λ(ω) := (ω ⊗ id)W.
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Hausdorff–Young inequalities for G

One can define the Fourier transform F on Lp(G) and by complex
interpolation we still have

Hausdorff–Young inequalities: Cooney ’10, Caspers ’13

Let G = (M,∆, ϕ, ψ) be a locally compact quantum group. Then

‖F(x)‖Lp′ (Ĝ,ϕ̂) ≤ ‖x‖Lp(G,ϕ), 1 ≤ p ≤ 2.
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Real Hausdorff–Young inequalities

Replace complex interpolation with real interpolation:

Real Hausdorff–Young inequalities

Let G = (M,∆, ϕ, ψ) be a locally compact quantum group with dual
Ĝ = (M̂, ∆̂, ϕ̂, ψ̂). If ϕ and ϕ̂ are tracial, then

‖F(x)‖p′ -p ‖x‖p,p′ , ‖F(x)‖p′,p -p ‖x‖p, 1 ≤ p ≤ 2.
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Simpler proof of Rn case

Noncommutative Lp-spaces, Lorentz spaces and interpolation

Locally compact quantum groups and Fourier transform

Proof of main results and remarks
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Proof of main result

The proof is similar to the Rn case:

‖F(xy)‖q -‖xy‖q′,q real Hausdorff–Young for G
-‖x‖r,∞‖y‖p′,q Hölder for NC Lorentz spaces
-‖x‖r,∞‖y‖p′,p inclusoin of NC Lorentz spaces

-‖x‖r,∞‖F(y)‖p. real Hausdorff–Young for Ĝ
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Remarks

I The index r for

‖mx : Lp(Ĝ, ϕ̂)→ Lq(Ĝ, ϕ̂)‖ -p,q ‖x‖Lr,∞(G,ϕ).

is sharp for G = G = T.
I When Ĝ is a compact quantum group of Kac type, the index p for

‖mx : Lp(Ĝ, ϕ̂)→ Lp(Ĝ, ϕ̂)‖ -p ‖x‖Lp∗,∞(G,ϕ),

is sharp, i.e. it cannot hold for p = 1 and G = G = T.
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Questions

I No reasonable Lorentz space Lp,q(M, τ) and real interpolation
interpolation for general weight τ .

I However, for a non-unimodular group G, the following question
still makes sense: do we have

‖mφ : Lp(Ĝ, ϕ̂)→ Lq(Ĝ, ϕ̂)‖ -p,q ‖φ‖Lr,∞(G,ϕ)?

Here ϕ is tracial while ϕ̂ is not. Our proof doesn’t work.

Thank you!
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